


OPERATING GUIDELINES - MILLING 45M, 45N, 45P, 46N, 47N, 48N

RPM Calculation

Calculation is to be made using the resultant diameter at ap.

Chip Thinning Calculator is recommended to ensure hmax falls within fz range.

Material		Brinnell Hardness	SFM	fz Feed per Tooth	Coolant
Steel	Low Carbon 1018, 8620	150-250	350-600	.002004	No
	High Carbon F-6180	250-400			
	Alloyed Steel 4140, 4340	150-300			
	Tool Steel A-6, D-1, D-2	Up to 300	300-500		
Stainless Steel	300 Series, 304, 316		250-500	.002004	May not be needed at high speeds
	400 Series 15-5 PH	Up to 320			
	13-8 PH	•			Yes
Cast Iron	Gray	150-250	450-700	.002005	No
	Nodular	150-250	400-600	.002004	
Aluminum	6061 T-6, 7075 T-6, 2024	•	1300-4000	.003006	Yes
Nickel Alloys	Inconel, Hastelloy, Waspalloy		75-125	.002004	Yes
Titanium	6AL-4V	-	125-200	.002004	Yes

OPERATING GUIDELINES - SPOT/C'SINK 45M, 45N, 45P, 46N, 47N, 48N

Material		Brinnell Hardness	SFM	f Feed per Revolution	Coolant
Steel	Low Carbon 1018, 8620	150-250	200-500	.003008	No
	High Carbon F-6180	250-400			
	Alloyed Steel 4140, 4340	150-300			
Stainless Steel	300 Series, 304, 316	-	200-400	.003006	May not be needed at
	400 Series 15-5 PH	Up to 320			high speeds
	13-8 PH	-			Yes
Cast Iron	Gray	150-250	250-550	.003010	No
	Nodular	150-250			
Titanium	6AL-4V	-	70-150	.002005	Yes

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.