

OPOSPONIA 05 OPERATING GUIDELINES (65°)

Chip Thinning fz 65°

* Chip Thinning Calculator is recommended to ensure hmax is greater than .003".

Materials				Vc	fz*	ap Recommended	Harder Tougher		Carlon
ISO	Mat'l Group #VDI 3323	Туре	Examples	Cutting Speed SFM	Feed/Tooth (inch)	Axial Depth of Cut (inch)	IN2505	IN2530	Coolant
P	1 thru 5	Non-alloy Steel	1018, A36, 1045, A572, 1070	400-1000	.004008	.040120	2	1	No
	6 thru 9	Low-alloy Steel	4140, 4340, P20, 8620, 300M	350-700					
	10, 11	High-alloy Steel	H13, A2, D2, M2, T1	300-600					
K	15 thru 16	Gray Cast Iron	CLS. 20, 30, 45	500-1000	.004008	.040120	1	2	No
	17 thru 20	Nodular Cast Iron	60-40-18, 100-70-03	400-800					

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.

