

DIPOSPORTATING GUIDELINES (65°)

Chip Thinning

* Chip Thinning Calculator is recommended to ensure hmax is greater than .003".

	Materials				fz*	ap Recommended	Harder Tougher					
ISO	Mat'l Group #VDI 3323	Туре	Examples	- Cutting Speed SFM	Feed/Tooth (inch)	Axial Depth of Cut (inch)	IN2504	IN2505	IN2530	IN2036	IN6537	Coolant
P	1 thru 5	Non-alloy Steel	1018, A36, 1045, A572, 1070	400-1000	.004010	.060200	4	3	2		1	No
	6 thru 9	Low-alloy Steel	4140, 4340, P20, 8620, 300M	350-700								
	10, 11	High-alloy Steel	H13, A2, D2, M2, T1	300-600								
M	12 - 13	Stainless Steel (ferritic & martensitic)	410, 416, 440	350-600	.004009	.060200		3	2	1		Yes
	14	Stainless Steel (austenitic)	303, 304, 316, 15-5, 17-4	300-550				3				May not be required at high speeds
K	15 thru 16	Gray Cast Iron	CLS. 20, 30, 45	500-1000	.004010	.060200	1	3	4		2	No
	17 thru 20	Nodular Cast Iron	60-40-18, 100-70-03	400-800								
S	31 - 35	High-Temp Alloys	Inconel, Hastelloy, Nimonic, Monel	65-120	.004008	.060200		2	3	1		Yes
	36 - 37	Titanium Alloys	6Al-4V, 5Al-5Mo-5V-3Cr	85-130				3	2	1		
Н	38 thru 39	Hardened Steel >48	A2, O1, D2	130-250	.004007	.060200	1	2				No

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.

