




## 4 mm • Operating Guidelines

## **AXIAL CHIP THINNING**

**NOTE:** The operating guidelines table below includes a column for feed-per-tooth (fz). That column accounts for the axial chip thinning that's generated by the cutting-edge angle (lead angle). All GoldSFeed high-feed cutters have a 12° cutting edge angle resulting in an fz that is approximately 5x the recommended chip thickness (hex).



| Materials |                                |                                                |                                          | Vc                   | Hex                              | fz*                  | Harder «» Tougher |        |         | Geometry |   |   |
|-----------|--------------------------------|------------------------------------------------|------------------------------------------|----------------------|----------------------------------|----------------------|-------------------|--------|---------|----------|---|---|
| ISO       | Mat'l<br>Group<br>#VDI<br>3323 | Туре                                           | Examples                                 | Cutting<br>Speed SFM | Max. Chip<br>Thickness<br>(inch) | Feed/Tooth<br>(inch) | IN2505            | IN2530 | Coolant | MR MR1   |   |   |
| P         | 1-5                            | Non-alloy steel                                | 1018, A36, 1045,<br>A572, 1070           | 600-1000             | .002008                          | .010040              | 1                 | 2      | No      | 1        | 2 | 3 |
|           | 6-9                            | Low-alloy steel                                | 4140, 4340, P20,<br>8620, 300M           | 500-800              | .002006                          | .010030              | 1                 | 2      | No      | 1        | 2 | 3 |
|           | 10, 11                         | High-alloy steel                               | H13, A2, D2,<br>M2, T1                   | 400-700              | .002004                          | .010020              | 1                 | 2      | No      | 1        | 2 | 3 |
| M         | 12, 13                         | Stainless steel<br>(ferritic &<br>martensitic) | 410, 416, 440                            | 400-700              | .002004                          | .010020              | 2                 | 1      | Yes     | -        | 1 | 2 |
|           | 14                             | Stainless steel<br>(austenitic)                | 303, 304, 316,<br>15-5, 17-4             | 500-800              | .002006                          | .010030              | 2                 | 1      | Yes     | -        | 2 | 1 |
| K         | 15, 16                         | Gray cast iron                                 | CLS. 20, 30, 45                          | 600-1000             | .002008                          | .010040              | 1                 | 2      | No      | 3        | 1 | 2 |
|           | 17-20                          | Nodular cast iron                              | 60-40-18,<br>100-70-03                   | 500-800              | .002006                          | .010030              | 1                 | 2      | No      | 3        | 1 | 2 |
| N         | 21-30                          | Aluminum                                       | 7075, 6061                               | 1000+                | .004008                          | .020040              | 1                 | 2      | Yes     | -        | 2 | 1 |
| S         | 31-35                          | High-temp<br>alloys                            | Inconel,<br>Hastelloy,<br>Nimonic, Monel | 80-140               | .001003                          | .005015              | 2                 | 1      | Yes     | -        | 1 | 2 |
|           | 36, 37                         | Titanium alloys                                | 6Al-4V,<br>5Al-5Mo-5V-3Cr                | 100-200              | .002005                          | .010025              | 2                 | 1      | Yes     | -        | 1 | 2 |
| Н         | 38, 39                         | Hardened<br>steel >48                          | A2, O1, D2                               | 100-200              | .001004                          | .005020              | 1                 | 2      | No      | 1        | - | - |

Note: Feed and speed recommendations are starting operating parameters. They are only guidelines from which further optimization should take place. Operating parameters are influenced by many machining variables. These variables may cause for reductions in feeds and speed or dramatic increases. Additionally, DOC and WOC may need to be revised to optimize the tools performance.